Controllable synthesis of flake-like Al-doped ZnO nanostructures and its application in inverted organic solar cells

نویسندگان

  • Xi Fan
  • Guojia Fang
  • Shishang Guo
  • Nishuang Liu
  • Huimin Gao
  • Pingli Qin
  • Songzhan Li
  • Hao Long
  • Qiao Zheng
  • Xingzhong Zhao
چکیده

Flake-like Al-doped ZnO (AZO) nanostructures including dense AZO nanorods were obtained via a low-temperature (100°C) hydrothermal process. By doping and varying Al concentrations, the electrical conductivity (σ) and morphology of the AZO nanostructures can be readily controlled. The effect of σ and morphology of the AZO nanostructures on the performance of the inverted organic solar cells (IOSCs) was studied. It presents that the optimized power conversion efficiency of the AZO-based IOSCs is improved by approximately 58.7% compared with that of un-doped ZnO-based IOSCs. This is attributed to that the flake-like AZO nanostructures of high σ and tunable morphology not only provide a high-conduction pathway to facilitate electron transport but also lead to a large interfacial area for exciton dissociation and charge collection by electrodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of ZnO Nanocrystals and Application in Inverted Polymer Solar Cells

Controllable synthesis of various ZnO nanocrystals was achieved via a simple and cost-effective hydrothermal process. The morphology evolution of the ZnO nanostructures was well monitored by tuning hydrothermal growth parameters, such as solution concentration, reaction temperature, and surfactant. As-obtained ZnO nanocrystals with different morphologies, e.g., ZnO nanorods, nanotetrapods, nano...

متن کامل

Synthesis and Characterization of Graphene-ZnO Nanocomposite and its Application in Photovoltaic Cells

In this paper, we present a simple method for preparation of graphene-ZnO nanocomposites (G-ZnO). The method is based on thermal treatment of the graphene oxide (GO)/ZnO paste which reduces the graphene oxide into the graphene and leads to the formation of the G-ZnO nanocomposite. The structure, morphology and optical properties of synthesized nanocomposites are characterized with XRD, FESEM, F...

متن کامل

Inverted Organic Solar Cells with Low-Temperature Al-Doped-ZnO Electron Transport Layer Processed from Aqueous Solution

The aqueous-based Zn-ammine complex solutions represent one of the most promising routes to obtain the ZnO electron transport layer (ETL) at a low temperature in inverted organic solar cells (OSCs). However, to dope the ZnO film processed from the Zn-ammine complex solutions is difficult since the introduction of metal ions into the Zn-ammine complex is a nontrivial process as ammonium hydroxid...

متن کامل

Al Doped ZnO Thin Films; Preparation and Characterization

ZnO is a promising material suitable for variety of novel electronic applications including sensors, transistors, and solar cells. Intrinsic ZnO film has inferiority in terms of electronic properties, which has prompted researches and investigations on doped ZnO films in order to improve its electronic properties. In this work, aluminum (Al) doped ZnO (AZO) with various concentrations and undop...

متن کامل

Controllable Synthesis of Flower-Like ZnO Nanostructure with Hydrothermal Method (RESEARCH NOTE)

Flower-like ZnO nanostructures were synthesized by decomposing Zn(OH)2 in 1,4- butanediol at 105 °C for 36 h. Size of flower-like ZnO nanostructure can be controlled by pH of the aqueous solution. In the preparation of flower-like ZnO nanostructure, zinc nitrate was used as a precursor. The morphology and microstructure of flower-like ZnO nanostructure have been characterized by scanning electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011